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1. What is model comparison?
2. The Bayesian model comparison framework
3. Cosmological applications (curvature, inflation)
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Bayes in the sky

Imperial College

Review of Bayesian methods in cosmology: Trotta (2008)

The rise of Bayesian methods in astrophysics
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Model comparison: how many sources? TR <

London

Feroz and Hobson

(2007) Signal + Noise
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Model comparison: how many sources?

Feroz and Hobson

(2007) Signal: 8 sources
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Model comparison:

evidence for new physics?

Imperial College

London

“Look Elsewhere” effect - see Eilam Gross’ talk
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Cosmological model comparison

Imperial College

e |s the spectrum of primordial fluctuations
scale-invariant (n = 1)?

¢ Model comparison:
n=1vsn # 1 (with inflation-motivated
prior)

¢ Results:
n # 1 favoured with odds of 17:1
(Trotta 2007)
n # 1 favoured with odds of 15:1
(Kunz, Trotta & Parkinson 2007)
n # 1 favoured with odds of 7:1
(Parkinson 2007 et al 2006)
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Large scale CMB anomalies

Copi et al (2010)
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The “SH” initials of Stephen Hawking are shown in
the ILC sky map.

WMAP team
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WMAP 7-years temperature power spectrum
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Additional data from SNla and BAO
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Putting it all together...
precision cosmology!

Imperial College

e Combined cosmological constraints on matter and dark energy content:
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The Bayesian framework
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Bayes’ Theorem:
The Equation of Knowledge

likelihood

d|o, 0
(. 1) - Psrn

evidence

For parameter inference it is sufficient to
consider

P(6|d, T)  P(d|§, T)P(§|I)

posterior o likelihood x prior

Probability density

A
7

Imperial College

0: parameters
d: data

I: any other external information,

or the assumed model

posterior

Dy
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The 3 levels of inference o eian College

LEVEL 1 LEVEL 2 LEVEL 3
| have selected a model M Actually, there are several None of the models
and prior P(B|M) possible models: Mo, M+,... is clearly the best

N N N

Parameter inference Model comparison Model averaging
(assumes M is the true What is the relative What is the inference on
model) plausibility of Mo, M,... the parameters
in light of the data? accounting for model
uncertainty?
_ P(d|o,M)P(6| M)
POl A = =k _ P(Mo|d) )

Roberto Trotta
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The many uses of Bayesian model
comparison

Imperial College

COSMOLOGY
ASTROPHYSICS Is the Universe flat?
Exoplanets detection Does dark energy evolve?
Is there a line in this spectrum? Are there anomalies in the CMB?

Is there a source in this image?

Cross-matching of sources

Which inflationary model is best?
Is there evidence for modified gravity?
Are the initial conditions adiabatic?

Many scientific questions are of
the model comparison type

ASTROPARTICLE
Gravitational waves detection
Do cosmic rays correlate with

AGNs?
Dark matter signals

Roberto Trotta
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| evel 2: mode] Comparison Imperial College

P(6]d, M) = Pw“m

Bayesian evidence or model likelihood

The evidence:
P(d|M) = [, dOP(d|6, M)P(6| M)
The model’s posterior:

d|M)P(M
P(M|d) = HApE

When comparing two models: The Bayes factor:

P(Mo|d) _ P(d|Mo) P(Mo) By = P(d|Mpo)
P(Mi|d) — P(d|Mi) P(M) 01 = P(d[M,)

Posterior odds = Bayes factor x prior odds

Roberto Trotta
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Scale for the strength of evidence

Imperial College

¢ A (slightly modified) Jeffreys’ scale to assess the strength of evidence
(Notice: this is empirically calibrated!)

InB| relative odds fav%ﬂgebdagﬁsers Interpretation
<1.0 < 31 < 0.750 oo
<2.5 < 12:1 0.923 weak
<b.0 < 150:1 0.993 moderate
> 5.0 > 150:1 > (0.993 strong

Roberto Trotta
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An in-built Occam’s razor imperial College

e Bayes factor balances quality of fit vs extra model complexity.

e |t rewards highly predictive models, penalizing “wasted” parameter space

| P(d|M) =

f dOL(6) P(0|M)
(9)5913(9)

RgL(0)

T

“Occam’s Quality of
> factor” fit

Likelihood

2

Q
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The evidence as predictive probability imperial College

e The evidence can be understood as a function of d to give the predictive probability
under the model M:

>
—

PdIM) 1

Simpler model Mo

_

—

data d

I
I
I
| More complex model M
I
I
I

Observed value dops

Roberto Trotta

Tuesday, 31 May 2011 19




Model comparison for nested models

¢ This happens often in practice:
we have a more complex
model, M+ with prior P(6|M-),
which reduces to a simpler

model (Mo) for a certain value of
the parameter,

Likelihood

o0

N

I
I
I
I
I
I
e.g. 0 = 0* = 0 (nested models) |
Y
I

|
|
|
0" =0 0

A 4
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Model comparison for nested models

Define: )\ = egg*

I
I
I
For “informative” data: |
I
I

In Bp1 = In 57 — &

Likelihood

“wasted” mismatch of
parameter space prediction with

(favours simpler observed data
model) (favours more
complex model)

A 4
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The rough guide to model comparison

Imperial College

wider prior

3>
Trotta

(2007) Information gain (bits)
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About frequentist hypothesis testing imperial College

e Warning: frequentist hypothesis testing cannot be interpreted as a statement
about the probability of the hypothesis!

e Example: to reject the null hypothesis Ho: 8 = 0, draw n normally distributed points
(with known variance ¢?). The x? is distributed as a chi-square distribution with (n-7)
degrees of freedom (dof). Pick a significance level & (or p-value, e.g. & = 0.05). If P(x?
> X2obs) < & reject the null hypothesis.

e This is a statement about the probability of observing data as extreme or more
extreme than have been measured assuming the null hypothesis is correct.

¢ |t is not a statement about the probability of the null hypothesis itself and cannot
be interpreted as such! (or you’ll make gross mistakes)

e The use of p-values implies that a hypothesis that may be true can be rejected
because it has not predicted observable results that have not actually occurred.
(Jeffreys, 1961)

Roberto Trotta

Tuesday, 31 May 2011 23




Imperial College

Assessing hypotheses

¢ The fundamental mistake is to confuse:

P(datalhypothesis) = P(hypothesis|data)

) i)

p-value, frequentist Requires Bayes’ Theorem
Assumes hypothesis to be This is typically the

true. Rejected If data guestion we are
improbable under the null Interested in!

(so what?)

Highly recommended: Scllke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Roberto Trotta
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Imperial College

Assessing hypotheses
P(datalhypothesis) = P(hypothesis|data)

Example:
Hypothesis (H): is a random person female (H=F or H=M)?

Observation (data): is the person pregnant? (D =) }Q)
=
Caution: P(D=Y|H=F) = 0.03

but

P(H=F|D=Y) >> 0.03

Roberto Trotta
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Prior-free evidence bounds ondan g

e \What if we do not know how to set the prior?

e Then our physical theory is probably not good enough! (e.g., dark energy, inflationary
potentials)

e E.g.: for nested models, we can still choose a prior that will maximise the support for
the more complex model:

wider prior (for fixed data)

I (bits) 21 24 28

Model O favored

N
IIIII

maX|mum _21llllllllllll§llllllllll
evidence for —2 -1 0 1 2 3

Model 1 Information gain I (base 10)

Roberto Trotta
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Maximum evidence for a detection imperial College

¢ The absolute upper bound: put all prior mass for the alternative onto the observed
maximum likelihood value. Then

B < exp(—x*/2)

e More reasonable class of priors: symmetric and unimodal around ¥=0, then
(o = significance level)

—1

B < exp(1l)aln a

If the upper bound is small, no other choice of prior will make the extra
parameter significant.

Gordon & Trotta (2007)

Roberto Trotta
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How to interpret the “number of sigma’s”

. Absolute bound ARERRIEL G
X sigma bound on InB
on InB (B)
(B)
2.0 0.9
0.05 2.0 (7:1) (3:1)
weak undecided
4.5 3.0
0.003 3.0 (90:1) (21:1)
moderate moderate
0.48 5.0
0.0003 3.6 (650:1) (150:1)
strong strong

Imperial College
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Numerical evaluation of the Bayesian evidence
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COm put”’]g the e\/idence Imperial College

Evidence: P(d‘M) = fQ d@P(d’@,M)P(@‘M)

_P(dMy)
Bo1 = B(ain)

Bayes factor:
e Usually a computational demanding multi-dimensional integral!
e Several numerical/semi-analytical techniques available:
e Thermodynamic integration or Population Monte Carlo

e Laplace approximation: approximate the likelihood to second order around
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.

e Savage-Dickey density ratio: good for nested models, gives the Bayes factor

¢ Nested sampling: clever & efficient, can be used generally

Roberto Trotta
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The “Nested Sampling” algorithm Pl

- L)

o 5 0 s 4 5 ) B o |
9 In(X) , 0 1 x
(animation courtesy of David Parkinson)

An algorithm to simplify the computation of the Bayesian evidence (Skilling, 2006):
X(A) = [155 P(6)d6

P(d) = [dOLB)P(B) = [} X(N\)dA

Feroz et al (2008), arxiv: 0807.4512 Trotta et al (2008), arxiv: 0809.3792

Roberto Trotta
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The MultiNest algorithm e College

e MultiNest: Also an extremely efficient sampler for multi-modal likelihoods!
Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Target likelihood Sampled likelihood

Roberto Trotta
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Computation of the evidence with Multinest mperial coliege

Feroz and Hobson

(2007)

Cluster 1
Cluster 2
Clustar 3
Cluster 4
Cluster 5

Log-Likelihcod(L)

Courtesy Mike Hobson

Paak |

Paak2

Gaussian mixture model:

True evidence: log(E) = -5.27
Multinest:

Reconstruction: log(E) = -5.33 = 0.11

Likelihood evaluations ~ 104
Thermodynamic integration:

Reconstruction: log(E) = -5.24 + 0.12

Likelihood evaluations ~ 10°

D Nike [efficiency J;r:e:nggn
2 7000 70% 83

5 18000 51% 7

10 53000 34%

20 255000 15% 1.8

30 753000 8% 1.6

Roberto Trotta
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MultiNest applied to object detection Mmpefial College

Feroz and Hobson

(2007) Bayesian reconstruction

7 out of 8 objects correctly identified.

200 Confusion happens because 2 objects very close.

Common Points

Object 1
Object2  «

Object 3

Object 4

o Object 5
Log-Likelihcod (L) Object6 ¢
Object 7«
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Imperial College

The Savage-Dickey density ratio

¢ This methods works for nested models and gives the Bayes factor analytically.

e Assumptions: nested models (M1 with parameters 6,¥ reduces to Mo for e.g. ¥ =0)
and separable priors (i.e. the prior P(6,¥|M1) is uncorrelated with P(8|Mo))

e Result: __ P(v=0|d,M7) I
e Advantages: | Marginal posterior
under M,
¢ analytical |
I
I

e often accurate

e clarifies the role of prior

¢ does not rely on Gaussianity

\ 4

-€
1=

0

Roberto Trotta
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Cosmological applications
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Cosmological model building: results

Imperial College
London

Competing model ANp InB Ref Data Outcome
Initial conditions
Isocurvature modes
CDM isocurvature +1 —7.6 58 WMAP3+, LSS Strong evidence for adiabaticity
+ arbitrary correlations +4 —1.0 46] WMAP1+4, LSS, SN Ia  Undecided
Neutrino entropy +1 [-2.5,—-6.5]F 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 —1.0 46 WMAPI1+, LSS, SN Ia  Undecided
Neutrino velocity +1 [-2.5,—6.5)" 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 —1.0 46] WMAPI1+, LSS, SN Ia  Undecided
Primordial power spectrum
No tilt (ns =1) —1 +0.4 47] WMAP1+, LSS Undecided
[-1.1,—0.6]7 51 WMAP1+, LSS Undecided
—0.7 58 WMAP1+, LSS Undecided
—0.9 7 WMAP1+ Undecided
[-0.7,—1.7)p:d 186] WMAP3+ ns = 1 weakly disfavoured
—2.0 185]  WMAP3+, LSS ns = 1 weakly disfavoured
—2.6 7 WMAP3+ ns = 1 moderately disfavoured
—2.9 58 WMAP3+, LSS ns = 1 moderately disfavoured
< —3.9¢ 65 WMAP3+, LSS Moderate evidence at best against ny % 1
Running +1 [-0.6, 1.0]P~d 186] WMAP3+, LSS No evidence for running
< 0.2¢ 166] WMAP3+, LSS Running not required
Running of running +2 < 0.4° 166] WMAP3+, LSS Not required
Large scales cut—off +2 [1.3,2.2]p:¢ 186] WMAP3+, LSS Weak support for a cut—off
Matter—energy content
Non—flat Universe +1 —38 70] WMAP3+, HST Flat Universe moderately favoured
—3.4 58] WMAP3+, LSS, HST Flat Universe moderately favoured
Coupled neutrinos +1 —0.7 193] WMAP3+, LSS No evidence for non—SM neutrinos
Dark energy sector
w(z) = wegg # —1 +1 [-1.3,—2.7)® 187) SN Ia Weak to moderate support for A
—3.0 50] SN Ia Moderate support for A
—1.1 51] WMAP1+, LSS, SN Ia  Weak support for A
[-0.2,—1]? 188] SN Ia, BAO, WMAP3  Undecided
[-1.6,—2.3]¢ 189] SN Ia, GRB Weak support for A
w(z) = wo + wyz +2 [-1.5,—34] 187] SN Ia Weak to moderate support for A
—6.0 50] SN Ia Strong support for A
—1.8 188] SN Ia, BAO, WMAP3  Weak support for A
w(z) = wo + wa(l —a) +2 —1.1 188] SN Ia, BAO, WMAP3 Weak support for A
[-1.2,—2.6)¢ 189] SN Ia, GRB Weak to moderate support for A
Reionization history
No reionization (7 = 0) -1 —2.6 [70] WMAP3+, HST 7 # 0 moderately favoured
No reionization and no tilt  —2 —10.3 70 WMAP3+, HST Strongly disfavoured

InB < 0: ACDM remains the “best”

model from a Bayesian perspective!

Trotta (2008)

Roberto Trotta
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Level 1 inference:
Constraints on curvature imperial College

Curvature
Q

B wmaP ]
Bl WMAP+BAO+SN |

WMAP+BAO

Komatsu et al (WMAP Team)
(2006)

0. . .0:2. . 10:4. . 10:6. . .0:8. | .1.0 -0'10.4 0.6 0.8
Q, Q,
Assuming flatness (Q, = 0): Assuming dark energy is A:
Q, = 0.721+0.015 0.0170 < Q_< 0.0068 (95%)
Q.ym = 0.23310.013
Q, = 0.0462%0.0015

Roberto Trotta
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Level 2 inference: Vardanyan, RT & Silk (2009)
d thl’ee—Way mode] COmpariSOH Imperial College

e For a FRW Universe, there are only 3 discrete models for the geometry:

ds® = —dt? + a? (1%2 | T2dﬂ)
(). = A

P P)
Hoao

Model O: k=0 Model 1: k=+1 Model -1: K = -1
Flat Closed Open
QK =0 QK <0 QK >0

P(Mo) = 1/3 P(M.1) = 1/3 P(M.+) = 1/3

Roberto Trotta
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Curvature priors

¢ The Astronomer’s prior:

motivated by consistency with basic properties of the observed Universe (age of
oldest objects, obviously non-empty)

-1 <Q, <1 (flat on Q)
¢ The Curvature scale prior:

gives the same prior probability to all orders of magnitude for the curvature radius
(ao), between 10-° for the curvature parameter (size of curvature perturbation) to
unity (Universe not empty)

—5 <log|Q| <0 (flat on log$2)

Roberto Trotta
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Results: current model comparison imperial College

¢ A positive InB favours the flat model over curved one
prior =1/3 prior = 2/3

Data sets and models | InBo1 InBo—1 |p(Mold)| p(Ny = oo|d) | Notes
Astronomer’s prior (flat in Q)
WMAP5+4+BAO (w = —1) 4.1 5.3 0.98 0.98 Moderate evide
WMAP5+BAO+SNIa (w = —1) 4.2 5.3 0.98 0.98 Moderate evide
WMAP5+4+BAO (w # —1) 1.0 6.1 0.74 0.74 Weak evidence
WMAP54+BAO+SNIa (w # —1) 3.9 5.3 0.98 0.98 Moderate evide
Curvature scale| prior (flat in o)
WMAP5+BAO (w = —1) 0.4 0.6 0.45 0.69 Inconclusive
WMAP5+BAO+SNIa (w = —1) 0.4 0.6 0.45 0.69 Inconclusive
WMAP5+BAO (w # —1) -0.8 0.5 0.26 0.42 Inconclusive
WMAP5+BAO+SNIa (w # —1) 0.3 0.6 0.44 0.67 Inconclusive
posterior posterior
probability of probability of
Vardanyan, RT & Silk (2009) flatness an infinite
Universe

Roberto Trotta
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Imperial College

The number of Hubble spheres

e For closed models, we can compute the probability distribution of the number of
Hubble spheres (apparent particle horizon) contained in a spatial slice:

Nu > 5 a robust lower bound

b . -
> B 1y ]
= - ~, Curvature scale pripr
£ 0.8 ' ' —
o) _ - ! i
T B : :w:-l. 7
5§06 | |: i. -
5 i I Astronom!er’s ]
© 04 _ prior _
- n : L _
L - | : .
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| evel 3 Inference:

Bayesian model-averaged constraints

Vardanyan, RT & Silk (2011)

P(0|d) = 2_; P(M;|d)P(0|d, M;)

Vardanyan, RT & Silk (2011)

¢ Aim: model-independent constraints that
account for model uncertainty

e Model posterior: flat models are preferred
by Bayesian model selection — probability
gets concentrated onto those models

e Consequence: constraints on the curvature,
number of Hubble spheres and size of the
Universe can be stronger after Baysian
model averaging!

e Number of Hubble spheres Ny > 251 (99%)

~8 times stronger
Radius of curvature > 42 Gpc (99%)

1.5 times stronger

Probability density

Imperial College

103 é—
102 E_
100 é—

10°!

- Concentrarion of

Astronomer’s prior
p

/

probability

Flat
Universe

-0.02

-0.01
QK

0

0.01
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Hunting down the best
model of inflation
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Inflationary models: large and small field [ =

e The simplest inflationary scenario is based on one single scalar field (adiabatic
perturbations)

e Taylor expansion of the potential V(¢p) of single-field models gives two classes:

¢

p
— large field
Mﬂ) (large field)

Vo) = (

V(g) = M [1 _ (%)p] (small field)

Roberto Trotta
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Priors on inflationary potential parameters R <

* Priors need to be chosen carefully based on physical considerations!

e Some arbitrariness involved in some choices, but mostly dictated by physical
boundaries or theoretical prejudice - see Martin, Ringeval & Trotta (2011)

e Data: WMAP7. Parameters and priors (Martin et al, arxiv: 1009.4157):

- (2]

Parameter

Small field models, Eq. (4)

Large field models, Eq.

SFI, SFI, SFI1; LFI, LFI,;; LFI; LFI; LFI3 LFI,
Normalization, In P. [2.7 x 1071°,4.0 x 10717] [2.7 x 1071°,4.0 x 107
Exponent, p (2.4, 10] [0.2,5] 2/3 1 2 3 4
Vacuum expectation, log(u/Mp1)| [—1,0] [0,2] [(—1,2] Not applicable
Reheating, In R [—46, 15] [—46, 15]
n number of free parameters 4 4 4 3 2 2 2 2 2

Roberto Trotta
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' ' Imperial College
Effective model complexity perial Colleg
e "Number of free parameters" is a relative concept. The relevant scale is set by the

prior range

¢ How many parameters can the data support, regardless of whether their detection is
significant?

e The Bayesian complexity measures the effective number of parameters:

Cp = x2(0) — x*(9)
1
- ZL: 1+ (04/%;)?

Kunz, RT & Parkinson (2006), Spiegelhalter et al (2002)

Roberto Trotta
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Example: polynomial fitting

e Data generated from a model with n = 6:

GOOD DATA

Max supported complexity ~ 9
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Results: Small field models favoured [mpefial College

The probability of small field models rises from an initial 50% to
P(small field | data) = 0.77 = 0.03
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Conclusions imperial College

e Determining the presence of new parameters is a model
comparison task: this requires the Bayesian evidence

¢ Bayesian model comparison allows to quantify the
preference between two or more competing models,
automatically implementing Occam’s razor.

® The prior choice for the extra parameters is critical in
controlling the strength of the Occam’s razor effect. As
such, a sensitivity analysis is mandatory.
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