
GREAT 2011 Summer School 

C2: How to work with a petabyte 

Matthew J. Graham (Caltech, VAO) 



Overview 

  Strategy 
  MapReduce 
  Hadoop family 
  GPUs 

01 June 2011 2/17 GREAT 2011 Summer School 



Divide-and-conquer strategy 
  Most problems in astronomy are 

embarrassingly parallalizable 
  Better technology just leads to scope 

scaling:  
  Better detectors  increase number of 

pixels  image coaddition 
  Better surveys  increase number of 

objects in catalogs  N-point correlation 
function 

  Better memory/processors  increase 
number of simulation points  cluster 
finding 

01 June 2011 3/17 GREAT 2011 Summer School 



MapReduce 
  Primary choice for fault-tolerant and massively 

parallel data crunching 
  Invented by Google fellows 
  Based on functional programming map() and 

reduce() functions 
  Reliable processing even though machines die 
  En-large parallelization – thousands of 

machines for tera/petasort 

01 June 2011 4/17 GREAT 2011 Summer School 



What is MapReduce? 
  Algorithm: 

  Input data is partitioned and processed 
independently by map tasks with each one emitting a 
list of <key, value> pairs as output 

  Pairs grouped by keys, yielding for each unique key k 
a list of values v_1, …, v_n of all values belonging to 
same key 

  “per-key” lists are processed independently by 
reduce tasks which collectively create final output 

  Analogy to SQL: 
  Map is a group-by clause of an aggregate query 
  Reduce is an aggregate function computed over all 

rows with same group-by attribute 

01 June 2011 5/17 GREAT 2011 Summer School 



MapReduce canonical example 
  Word count: 

  Map(key:uri, value:text) 
   for word in tokenize(value): 
    emit(word, 1) 
  Reduce(key:word type, value:list of 1s) 

 emit(key, sum(value))  

  Workthrough: 
  Map(key:”http://…”, value:”Space: the final frontier…”) 

  -> (“Space”, 1), (“the”, 1), (“final”, 1), ... 
  Group keys 

  -> (“Space”, (1)), (“the”, (1, 1, 1)), … 
  Reduce(key, value) 

  -> (“Space”, 1), (“the”, 3), (“new”, 3), … 

01 June 2011 6/17 GREAT 2011 Summer School 



Use of MapReduce in astronomy 
  Image Coaddition Pipeline (Wiley et al. 2011) 

  Evaluated image coaddition of 100000 SDSS images using Hadoop 
  Five possible methods of implementation with progressive 

improvements 
  Intend to develop full petascale data-reduction pipeline for LSST 

  Berkeley Transient Classification Pipeline (Starr et al. 2010) 
  Make probabilistic statements about transients making use of their 

light curves the event occurs on the sky ("context") particularly 
with minimal data from survey of interest 

  Resampled ("noisified") well-sampled well-classified sources with 
precomputed candences, models for observing depths, sky 
brightness, etc. + generate classifiers for different PTF cadences 

  Uses Java classifiers from Weka direct with Hadoop; Python code 
with Hadoop Streaming; Cascading package; plan to use Mahout 
and Hive 

  Large Survey Database (AAS 217 poster) 
  >109 rows, >1 TB data store for PS1 data analysis 
  In-house MapReduce system 

01 June 2011 7/17 GREAT 2011 Summer School 



Hadoop family 
(hadoop.apache.org) 

  HDFS: distributed file system 
  HBase: column-based db (webtable) 
  Hive: Pseudo-RDB with SQL  
  Pig: Scripting language 
  Zookeeper: Coordination service 
  Whirr: Running cloud services 
  Cascading: Pipes and filters  
  Sqoop: RDB interface  
  Mahout: ML/DM library 

01 June 2011 8/17 GREAT 2011 Summer School 



Using Hadoop 
  Java API 
  Hadoop streaming supports other languages (anything 

that supports input from stdin, output to stdout): 
> $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/

hadoop-streaming.jar \ 
    -input myInputDirs \ 
    -output myOutputDir \ 
    -mapper myMap.py \ 
    -reducer myReduce.py 
  Run locally, on remote cluster, in cloud 
  Test first locally on small subset of data then deploy 

to expensive resources on full data set: 
> cat data | map | sort | reduce 
  Canonical example left as an exercise to the student   

01 June 2011 9/17 GREAT 2011 Summer School 



Pig (pig.apache.org) 
  Pig Latin is a language which abstracts MapReduce 

programming (a la SQL for RDMBS) 
  A Pig Latin program describes a series of operations 

(as statements) which are applied to the input data to 
produce output 

  Process terabytes of data on a cluster with just a few 
lines of code in a terminal window  

  Operators: 
  Loading/storing - LOAD, STORE, DUMP 
  Filtering - FILTER, DISTINCT, FOREACH…GENERATE, 

STREAM, SAMPLE 
  Grouping and joining - JOIN, COGROUP, GROUP, CROSS 
  Sorting - ORDER, LIMIT 
  Combining/splitting - UNION, SPLIT 
  Diagnostic – DESCRIBE, EXPLAIN, ILLUSTRATE 
  UDF – REGISTER, DEFINE 

01 June 2011 10/17 GREAT 2011 Summer School 



Pig canonical example 
grunt> 
A = LOAD '/mydata/mybook.txt'; 
B = FOREACH A GENERATE FLATTEN

(TOKENIZE((chararray)$0)) AS word; 
C = FILTER B BY word MATCHES '\\w+'; 
D = GROUP C by word; 
E = FOREACH D GENERATE COUNT(C) AS 

count, GROUP AS word; 
F = ORDER E BY count DESC;STORE F into 

’/mydata/mybook.counts'; 

01 June 2011 11/17 GREAT 2011 Summer School 



Hive (hive.apache.org) 
  Hive organizes data into tables and provides HiveQL, a 

dialect of SQL but not full SQL-92, to run against them 
  Queries are converted into a series of MapReduce jobs 
  Maintains a metastore for service and table metadata 
  Differences from traditional RDBMS: 

  Verifies data when a query is issued (schema on read) 
  Full table scans are the norm so updates, transactions and 

updates are currently unsupported 
  High latency (minutes not milliseconds) 
  Supports complex data types: ARRAY, MAP, and STRUCT 
  Tables can be partitioned and bucketed in multiple dimensions 
  Specific storage formats 
  Multitable inserts 
  UDFs/UDTFs/UDAFs in Java 

01 June 2011 12/17 GREAT 2011 Summer School 



Hive canonical example 
CREATE TABLE docs(contents STRING) 

 ROW FORMAT DELIMITED 
 LOCATION ‘/mydata/mybook.txt’; 

FROM ( 
 MAP docs.contents  
  USING ‘tokenizer_script’ AS word, cnt 
  FROM docs 
  CLUSTER BY word) map_output 

REDUCE map_output.word, map_output.cnt  
 USING ‘count_script’ AS word, cnt; 

01 June 2011 13/17 GREAT 2011 Summer School 



Alternates to MapReduce 
(NoHadoop) 
  Percolator 

  Incrementally update massive data set continuouosly 
  Apache Hama 

  Implementation of BSP (Bulk Synchronous Parallel) 
  Alternate to MPI, smaller API, impossibility of 

deadlocks, evaluate computational cost of an 
algorithm as function of machine parameters 

  Pregel: 
  Very large graphs (billions of nodes, trillions of 

edges) 
  Uses BSP 
  Computations are applied at each node until  
  Cross-matched catalogs (GAIA, LSST, SKA) 

01 June 2011 14/17 GREAT 2011 Summer School 



GPUs 

  1536 cores per multiprocessor (high-end) 
  Each core can run 16 threads (~25k 

threads/GPU) 
  Threads are lightweight so can easily 

launch ~billion threads/sec 

01 June 2011 15/17 GREAT 2011 Summer School 



Programming GPUs 

  Favours brute force approach rather 
than ported smart algorithms 

  CUDA (NVIDIA) and OpenCL libraries 
for C 

  Various libraries available: sorting, 
BLAS, FFT, … 

  Thrust for C++ 
  PyCUDA/PyOpenCL for Python 
  Mathematica/MATLAB 
01 June 2011 16/17 GREAT 2011 Summer School 



PyCUDA example 
import numpy as np 
from pycuda import driver, compiler, gpuarray, tools 
from pycuda.curandom import rand as curand 
import pycuda.autoinit 

kernel_code = ””” 
__global__ void multiply (float *dest, float *a, float *b) 
{ 
  const int i = threadIdx.x; 
  dest[i] = a[i] * b[i]; 
} 
"”” 

mod = compiler.SourceModule(kernel_code) 
multiply = mod.get_function("multiply”) 
a = np.random.randn(400).astype(np.float32) 
b = np.random.randn(400).astype(np.float32) 
ans = np.zeros_like(a) 
multiply( 
        driver.Out(ans), driver.In(a), driver.In(b), 
        block=(400,1,1)) 
print dest-a*b 

01 June 2011 17/17 GREAT 2011 Summer School 


