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Abstract I review the framework of Bayesian model comparison as applied to cos-
mological model building. I then discuss some recent developments in the evaluation
of the Bayesian evidence, the central quantity for Bayesianmodel comparison, and
present applications to inflationary model building and to constraining the curvature
and minimum size of the Universe. I conclude by discussing what I think are some
of the open challenges in the field.

1 Introduction

Many problems in cosmology and astrophysics are about deciding whether the avail-
able data require the inclusion of a new parameter in a baseline model. Examples
of such problems include identifying astronomical sourcesin an image; deciding
whether the Universe is flat or not, or whether the dark energyequation of state
parameter changes with time; detecting an exo-planet orbiting a distant star; identi-
fying a line in a spectrum, and many others.

The classical approach to this kind of questions takes the form of hypothesis
testing: a null hypothesis is set up (where the effect one is looking for is supposed
absent) and a test is performed to reject it, at a certain significance level. This in-
volves comparing the observed value of a test statistics (typically, theχ2) with the
value it would assumeif the null hypothesis were true.The shortcomings of this
methodology are that (i) it does not return a probability forthe hypothesis (contrary
to a common misunderstanding among astrophysicists) and (ii) it cannot confirm a
hypothesis, merely fail to reject it (see [1, 2, 3] for a more detailed discussion).

Some of those problems are resolved if one takes a Bayesian outlook, and adopts
the framework of Bayesian model comparison. When there are several competing
theoretical models, Bayesian model comparison provides a formal way of evaluating
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their relative probabilities in light of the data and any prior information available.
The “best” model is then the one which strikes an optimum balance between quality
of fit and predictivity. In fact, it is obvious that a model with more free parameters
will always fit the data better (or at least as good as) a model with less parameters.
However, more free parameters also mean a more “complex” model (a precise defi-
nition of “model complexity” can be found in [4]). Such an added complexity ought
to be avoided whenever a simpler model provides an adequate description of the
observations. This guiding principle of simplicity and economy of an explanation
is known asOccam’s razor— the simplest theory compatible with the available
evidence ought to be preferred.

An important feature is that an alternative model must be specified against which
the comparison is made. In contrast with frequentist goodness–of–fit tests, Bayesian
model comparison maintains that it is pointless to reject a theory unless an alterna-
tive explanation is available that fits the observed facts better. In other words, unless
the observations are totally impossible within a model, finding that the data are im-
probable given a theory does not say anything about the probability of the theory
itself unless we can compare it with an alternative. A consequence of this is that the
probability of a theory that makes a correct prediction can increase if the prediction
is confirmed by observations, provided competitor theoriesdo not make the same
prediction.

2 Bayesian model comparison

2.1 Shaving theories with Occam’s razor

Bayesian inference is often the statistical framework of choice in cosmology (see
e.g. [5, 3]), and, increasingly so, in astroparticle physics. The posterior pdfp(Θ |d,M )
for then-dimensional parameters vectorΘ of a modelM is given by

p(Θ |d,M ) =
p(d|Θ ,M )p(Θ |M )

p(d|M )
. (1)

Here,p(Θ |M ) is the prior,p(d|Θ ,M ) the likelihood andp(d|M ) the model like-
lihood, or marginal likelihood (usually called “Bayesian evidence” by physicists),
the central quantity for Bayesian model comparison.

In the context of model comparison it is appropriate to thinkof a model as a
specification of a set of parametersΘ andof their prior distribution,p(Θ |M ). It is
the number of free parametersand their prior range that control the strength of the
Occam’s razor effect in Bayesian model comparison: models that have many param-
eters that can take on a wide range of values but that are not needed in the light of
the data are penalized for their unwarranted complexity. Therefore,the prior choice
ought to reflect the available parameter space under the model M , independently
of experimental constraints we might already be aware of. This is because we are
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trying to assess the economy (or simplicity) of the model itself, and hence the prior
should be based on theoretical or physical constraints on the model under considera-
tion. Often these will take the form of a range of values that are deemed “intuitively”
plausible, or “natural”. Thus the prior specification is inherent in the model compar-
ison approach.

2.2 The Bayesian evidence

The evaluation of a model’s performance in the light of the data is based on the
Bayesian evidence, the normalization integral on the right–hand–side of Bayes’ the-
orem, Eq. (1):

p(d|M ) ≡

∫

p(d|Θ ,M )p(Θ |M )dnΘ . (2)

Thus the Bayesian evidence is the average of the likelihood under the prior for a
specific model choice. From the evidence, the model posterior probability given the
data is obtained by using Bayes’ Theorem to invert the order of conditioning:

p(M |d) ∝ p(M )p(d|M ), (3)

wherep(M ) is the prior probability assigned to the model itself. Usually this is
taken to be non–committal and equal to 1/Nm if one considersNm different models.
When comparing two models,M0 versusM1, one is interested in the ratio of the
posterior probabilities, orposterior odds, given by

p(M0|d)

p(M1|d)
= B01

p(M0)

p(M1)
(4)

and theBayes factor B01 is the ratio of the models’ evidences:

B01 ≡
p(d|M0)

p(d|M1)
(Bayes factor). (5)

A valueB01 > (<) 1 represents an increase (decrease) of the support in favourof
model 0 versus model 1 given the observed data. From Eq. (4) itfollows that the
Bayes factor gives the factor by which the relative odds between the two models
have changed after the arrival of the data, regardless of what we thought of the
relative plausibility of the models before the data, given by the ratio of the prior
models’ probabilities.

Bayes factors are usually interpreted against the Jeffreys’ scale [6] for the
strength of evidence, given in Table 1. This is an empirically calibrated scale, with
thresholds at values of the odds of about 3 : 1, 12 : 1 and 150 : 1,representing weak,
moderate and strong evidence, respectively.

Bayesian model comparisondoes notreplace the parameter inference step (which
is performed within each of the models separately). Instead, model comparisonex-
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| lnB01| Odds Probability Strength of evidence

< 1.0 ∼
< 3 : 1 < 0.750 Inconclusive

1.0 ∼ 3 : 1 0.750 Weak evidence
2.5 ∼ 12 : 1 0.923 Moderate evidence
5.0 ∼ 150 : 1 0.993 Strong evidence

Table 1 Empirical scale for evaluating the strength of evidence when comparing two models,
M0 versusM1 (so–called “Jeffreys’ scale”). Threshold values are empirically set, and they occur
for values of the logarithm of the Bayes factor of| lnB01| = 1.0, 2.5 and 5.0. The right–most
column gives our convention for denoting the different levels of evidence above these thresholds.
The probability column refers to the posterior probabilityof the favoured model, assuming non–
committal priors on the two competing models, i.e.p(M0) = p(M1) = 1/2 and that the two
models exhaust the model space,p(M0|d)+ p(M1|d) = 1.

tendsthe assessment of hypotheses in the light of the available data to the space of
theoretical models, as evident from Eq. (4).

3 Recent developments

3.1 Numerical evaluation of the evidence

The computation of the Bayesian evidence, Eq. (2), is in general a numerically chal-
lenging task, as it involves a multi–dimensional integration over the whole of pa-
rameter space. Fortunately, several methods are now available, each with its own
strengths and domains of applicability. Some of them have been developed by as-
tronomers/cosmologists and are rapidly finding applications in other domains.

1. The numerical method of choice until recently has been thermodynamic inte-
gration, whose computational cost can however be fairly large. In typical cos-
mological applications [7, 8, 9], thermodynamic integration can require up to
∼ 107 likelihood evaluations, two orders of magnitude more than MCMC–based
parameter estimation. Recently, population Monte Carlo algorithms have been
used succesfully to compute the evidence [10].

2. Skilling [11, 12] has put forward an elegant algorithm called “nested sampling”,
which has been implemented in the cosmological context by [13, 14, 15, 16, 17]
(for a theoretical discussion of the algorithmic properties, see [18]). It calculates
the evidence by transforming the multi-dimensional evidence integral of Eq. (2)
into a one–dimensional integral that is easy to evaluate numerically. This is ac-
complished by defining the prior volumeX as dX = p(Θ)dnΘ , so that

X(λ ) =

∫

L (Θ )>λ
p(Θ)dnΘ , (6)
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whereL (Θ) ≡ p(d|Θ) is the likelihood function and the integral extends over
the region(s) of parameter space contained within the iso-likelihood contour
L (Θ) = λ (in this section we drop the explicit conditioning on modelM , as
this is understood). Assuming thatL (X), i.e. the inverse of (6), is a monoton-
ically decreasing function ofX (which is trivially satisfied for most posteriors),
the evidence integral (2) can then be written as

Z ≡ p(d) =

∫ 1

0
L (X)dX, (7)

Thus, if one can evaluate the likelihoodsL j = L (Xj), whereXj is a sequence
of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (8)

as shown schematically in Fig. 1, the evidence can be approximated numerically
using standard quadrature methods as a weighted sum

Z =
M

∑
i=1

Liwi . (9)

If one uses a simple trapezium rule, the weights are given bywi =
1
2(Xi−1−Xi+1).

An example of a posterior in two dimensions and its associated functionL (X)
is shown in Fig. 1.

(a) (b)

Fig. 1 Cartoon illustrating (a) the likelihood of a two-dimensional problem; and (b) the trans-
formed L (X) function where the prior volumesXi are associated with each likelihoodLi .
From [17].

This technique allows to reduce the computational burden toabout∼ 105 like-
lihood evaluations. Recently, the development of what is called “multi–modal
nested sampling” has allowed to increase significantly the efficiency of the
method [16, 17], reducing the number of likelihood evaluations by another or-
der of magnitude.
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3. Useful approximations to the Bayes factor, Eq. (5), are available for situations
in which the models being compared arenestedinto each other, i.e. the more
complex model (M1) reduces to the original model (M0) for specific values of
the new parameters. This is a fairly common scenario in cosmology, where one
wishes to evaluate whether the inclusion of the new parameters is supported by
the data. For example, we might want to assess whether we needisocurvature
contributions to the initial conditions for cosmological perturbations, or whether
a curvature term in Einstein’s equation is needed, or whether a non–scale in-
variant distribution of the primordial fluctuation is preferred. Writing for the ex-
tended model parametersΘ = (α,β ), where the simpler modelM0 is obtained
by settingβ = 0, and assuming further that the prior is separable (which isusu-
ally the case in cosmology), i.e. that

p(α,β |M1) = p(β |M1)p(α|M0), (10)

the Bayes factor can be written in all generality as

B01 =
p(β |d,M1)

p(β |M1)

∣

∣

∣

∣

β=0
. (11)

This expression is known as the Savage–Dickey density ratio(SDDR, see [19,
20]). The numerator is simply the marginal posterior under the more complex
model evaluated at the simpler model’s parameter value, while the denominator
is the prior density of the more complex model evaluated at the same point. This
technique is particularly useful when testing for one extraparameter at the time,
because then the marginal posteriorp(β |d,M1) is a 1–dimensional function and
normalizing it to unity probability content only requires a1–dimensional integral,
which is simple to do using for example the trapezoidal rule.

4. An instructive approximation to the Bayesian evidence can be obtained when
the likelihood function is unimodal and approximately Gaussian in the parame-
ters [21]. Expanding the likelihood around its peak to second order one obtains
the Laplace approximation

p(d|Θ ,M ) ≈ Lmaxexp

[

−
1
2
(Θ −ΘML)tL(Θ −ΘML)

]

, (12)

whereΘML is the maximum–likelihood point,Lmax the maximum likelihood
value andL the likelihood Fisher matrix (which is the inverse of the covariance
matrix for the parameters). Assuming as a prior a multinormal Gaussian dis-
tribution with zero mean and Fisher information matrixP one obtains for the
evidence, Eq. (2)

p(d|M ) = Lmax
|F |−1/2

|P|−1/2
exp

[

−
1
2
(ΘML

tLΘML −Θ t
FΘ)

]

, (13)
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where the posterior Fisher matrix isF = L + P and the posterior mean is given
byΘ = F−1LΘML .

From Eq. (13) we can deduce a few qualitatively relevant properties of the evi-
dence. First, the quality of fit of the model is expressed byLmax, the best–fit likeli-
hood. Thus a model which fits the data better will be favoured by this term. The term
involving the determinants ofP andF is a volume factor, encoding the Occam’s ra-
zor effect. As|P| ≤ |F |, it penalizes models with a large volume of wasted parameter
space, i.e. those for which the parameter space volume|F |−1/2 which survives after
arrival of the data is much smaller than the initially available parameter space under
the model prior,|P|−1/2. Finally, the exponential term suppresses the likelihood of
models for which the parameters values which maximise the likelihood,ΘML , differ
appreciably from the expectation value under the posterior, Θ . Therefore when we
consider a model with an increased number of parameters we see thatits evidence
will be larger only if the quality–of–fit increases enough tooffset the penalizing
effect of the Occam’s factor.

On the other hand, it is important to notice that the Bayesianevidence doesnot
penalize models with parameters that are unconstrained by the data. It is easy to see
that unmeasured parameters (i.e., parameters whose posterior is equal to the prior)
do not contribute to the evidence integral, and hence model comparison does not act
against them, awaiting better data.

3.2 Principled application of model selection

I’d like to discuss the inflationary model comparison carried out in Ref. [22] as an
example of the application of the above formalism to the problem of deciding which
theoretical model is the best description of the available observations. Although the
technical details are fairly involved, the underlying ideacan be sketched as follows.

The term “inflation” describes a period of exponential expansion of the Universe
in the very first instants of its life, some 10−32 seconds after the Big Bang, during
which the size of the Universe increased by at least 25 ordersof magnitude. This
huge and extremely fast expansion is required to explain theobserved isotropy of
the cosmic microwave background on large scales. It is believed that inflation was
powered by one or more “scalar fields”. The behaviour of the scalar field during
inflation is determined by the shape of its potential, which is a real-valued function
V(φ) (whereφ denotes the value of the scalar field). The detailed shape ofV(φ)
controls the duration of inflation, but also the spatial distribution of inhomogeneities
(perturbations) in the distribution of matter and radiation which emerge from infla-
tion. It is from those perturbations that galaxies and cluster form out of gravitational
collapse. Hence the shape of the scalar field can be constrained by observations of
the large scale structures of the Universe and of the CMB anistropies.

Theories of physics beyond the Standard Model motivate certain functional
forms ofV(φ), which however typically have a number of free parameters,Ψ . The
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Fig. 2 Results of Bayesian model comparison between 9 inflationarymodels (vertical axis), sub-
divided in two categories (SFI models and LFI models), from Ref. [22]. Errorbars reflect the 68%
uncertainty on the value of the Bayes factor from the numerical evaluation.

fundamental model selection question is to use cosmological observations to dis-
criminate between alternative models forV(φ) (and hence alternative fundamental
theories). The major obstacle to this programme is that verylittle if anything at all
is knowna priori about the free parametersΨ describing the inflationary potential.
What is worse, such parameters can assume values across several orders of magni-
tude, according to the theory. Hence the Occam’s razor effect of Bayesian model
comparison can vary in a very significant way depending on theprior choices for
Ψ . Furthermore, a non-linear reparameterization of the problem (which leaves the
physics invariant) does in general change the Occam’s razorfactor, and hence the
model comparison result.

In Ref. [22] a first attempt was made to tackle inflationary model selection from
a principled point of view. The main result of the analysis isshown in Fig. 2, which
presents the Bayes factors between models (suitably normalized w.r.t. a reference
model, here the so-called LFI2 model). Two classes of models forV(φ) have been
considered, namely so-called Small Field Inflation (SFI) models and Large Field In-
flation (LFI) models. The two classes of model differ in the parameterized form of
V(φ), and have different sets of parameters, differing in dimensionality, as well.
Within each class of models, sub-classes are defined (denoted by subscripts in
Fig. 2) based on theoretical considerations, e.g. by fixing some of the parameters
to certain values. The priors on the models’ parameters havebeen chosen based on
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theoretical considerations of possible values achievableunder each class of mod-
els. Typical priors are uniform on the log of the parameter (to reflect indifference
w.r.t. the characteristic scale of the quantity), within a range chosen as a reflection
of physical model building. The models’ priors are chosen insuch a way to lead to
non-committal priors for the two classes as a whole, i.e.p(SFI) = p(LFI) = 1/2.

Fig. 2 shows that some models in the LFI class are fairly strongly disfavoured by
the data (e.g., LFI3 and LFI4), while the model comparison is inconclusive in most
other cases. One finds that the posterior probability for theSFI model class evaluates
to p(SFI|d) ≈ 0.77. Therefore, the probability of the SFI class has increased from
50% in the prior to about 77% in the posterior, signalling a weak preference for this
type of models in the light of the data.

3.3 Bayesian model averaging

Bayesian model averaging represents the third level of Bayesian inference – incor-
porating model uncertainty (level 2) into parameter inferences (level 1). The idea is
to average the posterior distribution for the parameters ofinterest over the space of
available models, with a weight given by the models’ posterior probability:

p(Θ |d) = ∑
M

p(Θ |d,M )p(M |d) . (14)

Of course, the abovecaveatsabout the choice of prior for model selection apply
equally to model averaging. An interesting consequence of Bayesian model averag-
ing is that in certain cases model averaged parameter constraints can be tighter than
non-model averaging ones, a consequence of the concentration of posterior proba-
bility onto simpler models due to the Occam’s razor effect. We illustrate this with
the example of model averaged constraints on the curvature parameter, a problem
recently investigated in Ref. [23] (for applications of Bayesian model averaging to
the dark energy equation of state, see [24]; to the scalar spectral index, see [25] and
to weak lensing and Sunyaev-Zel’dovich effect data, see [26]).

In the Friedmann-Robertson-Walker (FRW) Universe there are only three dis-
crete possibilities for the underlying geometry, namely flat, open or closed. The
amount of curvature is usually characterized by the curvature parameterΩκ : if
Ωκ < 0 the geometry of spatial sections is spherical (i.e., the Universe is closed)
and the Universe has a finite size. If insteadΩκ > 0 the geometry is hyperbolic (i.e.,
the Universe is open), while forΩκ = 0 spatial sections are flat. In both the two lat-
ter cases, the spatial extent of the Universe is infinite. Limits on the value ofΩκ can
be derived in a geometrical way by observing the angular sizesubtended by cosmo-
logical features of known physical length, such as the acoustic peaks in the cosmic
microwave background (CMB) and the corresponding baryonicacoustic oscillations
(BAO) in the distribution of large scale structures. Furthermore, type Ia supernovae
(SNIa) can be used as standard candles to determine the luminosity distance as a
function of redshift. A combination of these three probes has been succesfully used
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to set very tight limits to the curvature parameter, which isnow constrained at better
than the∼ 10−3 level. For example, [27] findΩκ = −0.0057+0.0066

−0.0068 at 68 % CL,
employing a combination of WMAP7, BAO [28] and SNIa data [29]. Impressive as
such limits are, theyassumethe Universe to be curved, and carry out parameter in-
ference on the quantity describing curvature. A different methodological perspective
is required to go beyond that assumption: model-averaged limits on the curvature of
the Universe, fully accounting for the uncertainty in selecting the correct model for
the FRW Universe. Given current data, flat models are preferred by Bayesian model
selection from an Occam’s razor perspective, and thereforemost of the probability
mass becomes concentrated in models with vanishing spatialcurvature. However,
this “concentration of probability” effect remains quite strongly dependent on the
prior chosen on the curvature parameter (which controls thestrength of the Oc-
cam’s razor). A choice of prior based on requiring consistency with basic observa-
tional properties of the Universe (such as the age of the oldest objects, the so-called
“Astronomer’s prior”) leads to a posterior probability fora flat Universe of 98.6%,
while a prior based on inflationary consideration (the “curvature scale prior”) leads
to a much reduced probability of only about 46%. As in any goodBayesian analysis,
examining the effect of a reasonable change of prior remainsparamount.

The model averaged constraints onΩκ for those two choices of priors are de-
picted in Fig. 3. Even the most conservative prior choice gives model-averaged
constraints on curvature that are a factor of∼ 2 better than non model-averaged
intervals. A more aggressive prior choice (the Astronomer’s prior) leads to an im-
provement in the constraints onΩκ by a factor∼ 100, giving|Ωκ | ≤ 2× 10−4 at
99%. The same formalism can be used to derive model averaged constraints on the
size of the Universe, which is robustly constrained to encompassNU ∼

> 251 Hubble
spheres, an improvement of a factor∼ 40 on previous constraints. Finally, the radius
of curvature of spatial section is found to beRc ∼> 42 Gpc.

4 Open challenges and conclusions

I conclude by listing what I think are some of the open questions and outstanding
challenges in the application of Bayesian model selection to cosmological model
building.

• Is Bayesian model selection always applicable?The Bayesian model com-
parison approach as applied to cosmological and particle physics problems has
been strongly criticized by some authors. E.g., George Efstathiou [30] and Bob
Cousins [31] pointed out (in different contexts) that ofteninsufficient attention
is given to the selection of models and of priors, and that this might lead to
posterior model probabilities which are largely a functionof one’s unjustified as-
sumptions. This draws attention to the difficult question ofhow to choose priors
on phenomenological parameters, for which theoretical reasoning offers poor or
no guidance (as in the inflationary model comparison exampleabove).
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Fig. 3 Model-averaged marginal posterior probability distribution for the curvature parameter, as-
suming the Astronomers’ prior (left panel) and the Curvature scale prior (right panel) for the cur-
vature parameter. In the right panel, the solid line appliesto closed Universes (Ωκ < 0), while the
dotted line to open Universes (Ωκ > 0). The peaks represent the Dirac delta function encompassing
the probability mass associated with flat models, a concentration of probability effect coming from
Occam’s razor. From [23].

• How do we deal with Lindley’s paradox? It is simple to construct examples
of situations where Bayesian model comparison and classical hypothesis testing
disagree (Lindley’s paradox [32]). This is not surprising,as frequentist hypoth-
esis testing and Bayesian model selection really ask different questions of the
data [2]. As Louis Lyons aptly put it: “Bayesians address thequestion everyone
is interested in by using assumptions no–one believes, while frequentists use im-
peccable logic to deal with an issue of no interest to anyone”[33]. However, such
a disagreement is likely to occur in situations where the signal is weak, which are
precisely the kind of “frontier science” cases which are themost interesting ones
(e.g., discovery claims). Is there a way to evaluate e.g. theloss function from
making the “wrong” decision about rejecting/accepting a model?

• How do we assess the completness of the set of known models?Bayesian
model selection always returns a best model among the ones being compared,
even though that model might be a poor explanation for the available data. Is
there a principled way of constructing anabsolutescale for model performance
in a Bayesian context? Recently, the notion of Bayesian doubt, introduced in [34],
has been used to extend the power of Bayesian model selectionto the space of un-
known models in order to test our paradigm of aΛCDM cosmological model. It
would be useful to have feedback from the statistics community about the valid-
ity of such an approach, and whether similar tools have already been developed
in other contexts.

• Is there such a thing as a “correct” prior? In fundamental physics, models
and parameters (and their priors) are supposed to represent(albeit in an ideal-
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ized way) the real world, i.e., they are not simply useful representation of the
data (as they are in other statistical problems, e.g. as applied to social sciences).
In this sense, one could imagine that there exist a “correct”prior for e.g. the
parametersΘ of our cosmological model, which could in principle be derived
from fundamental theories such as string theory (e.g., the distribution of values
of cosmological parameters across the landscape of string theory). This raises in-
teresting statistical questions about the relationship between physics, reality and
probability.
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