
Chapter 1

Statistical Analysis Of Caustic
Crossings In Multiply Imaged Quasars

Mediavilla, T., Ariza, O., Mediavilla, E., Alvarez, P.

Abstract Comparison between microlensing on quasars observed and simu-
lated allow to infer conclusions about physical parameters such as source size,
quasar brightness profile, mass distribution of the lens, abundance and mass
of microlenses, and relative transverse velocity between source and lens. By
simulating magnification maps for different values of the parameters we in-
tend to calculate the probability that a variable takes a particular value. One
of the problems facing this statistical study is that experimental errors and
sources of variability other than microlensing can significantly affect data and
results. To minimize this problem, we reduce the phenomenon of microlensing
to a series of discrete events, the caustic crossings. If the source size is small
(X-ray emitting source) each caustic crossing appears well resolved, would be
of great amplitude (unaffected by measurement errors) and would be diffi-
cult to confuse with other types of variability. From the simulations we have
calculated the probability that we are faced with a given distribution of mass
in stars from the number of observed caustic crossings. We apply this study
to the case of the image D of quasar QSO 2237 + 0305.
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1.1 Introduction

Although gravitational lensing is the term most used by astronomers to de-
scribe this phenomenon, the expression gravitational mirage is closer to its
nature.

Terrestrial mirages are phenomena produced by the bending of light in
the atmosphere due to variations in refractive index resulting from changes
in temperature.

Not only variation in refractive index in the atmosphere causes the bending
of light rays, but, as revealed in the 1919 eclipse experiment, gravity blends
light rays too.

In the Solar System we can observe a weak effect of blending of light by
gravity of sun, the variation in the apparent position of a star. But in other
cosmological scenarios gravity can lead to a strong effect of curvature of light
forming multiple images from a single source.

The object of our study is the deflection of light rays from a quasar, a
bright source located in the depths of Universe, by the gravitational field of
a galaxy almost aligned with quasar and observer. If there were no gravity,
the ray would not be bent and observer would see the galaxy and a single
source image. When gravity is present, paths of light ray are bent and light
can follow more than one way to reach observer who can see more than
one image of source. Then the observer would see galaxy and several quasar
images around it.

We are interested in studying the quasar 2237+0305, Einstein´s Cross. It
is a multiple image system. The four images can be seen through the center
of the galaxy where density of matter is greater. This causes the microlensing
phenomenon what is the aim of our study.

In the scenario we are considering a galaxy acts as a lens to produce
two images of a distant object, quasar. So far we have assumed the mass
distribution of the galaxy is continuous, but in fact, the mass of the galaxy is
discretely distributed in stars. the beam of light from one of the images may
meet with a star that will act as a lens. We cannot see the images generated by
this microlens because masses of stars are very small, and images cannot be

Fig. 1.1 QSO 2237+0305,
Einstein´s Cross
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Fig. 1.2 Microlensing

separated with current measurement methods. However, microlenses produce
an observable effect: magnification of image flux.

A sketch of lensing can be seen in Fig. 1.3. On the right we have source
plane and on the left, lens plane (image plane). Lensing associates in general
more than one image to a given source. Magnification is defined as the sum
of the fluxes of all the images divided by source flux.

µ =
∑
i

FIi

FS
, (1.1)

Liouville´s Theorem establishes fluxes are proportional to areas, then
Eq. 1.1 is now written:

µ =
∑
i

SIi

S
, (1.2)

With this formulae we can calculate magnification of a given source in a
given position in source plane. However, in most cases we would like to obtain
light curves, that is to study changes in magnification when position of source
changes or to study changes in magnification when parameters of source

Fig. 1.3 Sketch of lensing
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change, for instance the source size. To separate computation of magnification
from source properties and position we can divide source plane in pixels. And
compute magnification of each pixel. Then magnification of a source will be
obtained as the convolution of its brightness with the magnification of pixels
covered by the source. Thus, our objective is to calculate magnification maps,
that is, magnification at each pixel in source plane. We have reduced our
problem to compute the magnification of a pixel source of constant intensity.
For this we need to evaluate source flux and images fluxes. That is, we need
to find out all the images of the source. We need to solve lens equation which
can be very difficult.

This is lens equation:

−→y = −→x −−→α (−→x ) , (1.3)

A point in source plane has several images , so is one to many corre-
spondence, and it is not a map. Solve lens equation is not always possible
analytically and very difficult in other cases. On the other hand, inverse lens
mapping is single-valuated, we can use it to obtain a source position for each
point in image plane.

Some examples of magnification map are:

• Point-like lens magnification map:
It is the simplest case. Magnification increases from outside to inside and
reaches its maximum at center. This is a singular point because it cancels
Jacobian and magnification is theoretically infinite. The geometrical place
in source plane where Jacobian cancels is called caustic curve. In this case
is degenerated at a point.

• Binary lens magnification map:
In this case caustic curve is not degenerated. It has diamond shape

• If we add more lens, magnification map will be more complicated. It will
have more and more caustic curves.

Fig. 1.4 Point-like lens magnification map (left). Binary magnification map (right)
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1.1.1 Motivation and objectives

Fluctuations induced by microlensing in the observed light curves of quasars
contain information about lensing objects (masses, density), about the un-
resolved source structure, and about the lens system (transversal velocity).
So from a comparison between observed and simulated quasar microlensing
we can obtain information about the physical parameters of interest. These
conclusions can only be done in an statistical sense[1]. Thus, simulating mag-
nification maps for some values of physical parameters we can try to calcu-
late the probability that microlensing magnification takes a value determined
from observations. This statistical analysis faces a problem: experimental er-
rors and sources of variability other than microlensing can significantly affect
data and results. To solve this problem we propose to simplify it reducing the
microlensing effect to a series of discrete events, caustic crossings. If source
size is small enough (X-ray emitting source)each caustic crossing will appear
as a single event. In addition, caustic crossings are events of high magnifica-
tion (little affected by measurement errors), and they are difficult to mistake
with other kind of variability.

1.2 Statistical analysis of caustics concentration based
on caustic crossings counts

We see a magnification map in Fig. 1.5. The straight line corresponds to the
path of a pixel size source. On the right it is represented source´s light curve.
Whenever source crosses a caustic a large increase in magnification that only
can be associated with the phenomenon of caustic crossing is produced. That
is, for a source of this size the light curve would provide direct information of
an observable very interesting from an statistical point of view: the number

Fig. 1.5 Magnification map crossed by a source (left). Light curve of one pixel source
(right)
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of caustic crossings. One source of this size corresponds, in practice, to X-ray
emission. However,if source were larger, it wouldn’t be possible to identify
caustic crossings as isolated events.

Distribution of caustics in magnification maps depends on the character-
istics of star and dark matter distributions in lensing galaxy. In this work,
we study how the existence of a range of masses in stars distribution affects
to caustics concentration.

Statistical analysis of caustics spatial distribution is based on following
steps:

1. Simulate magnification maps for different densities of matter and different
mass distributions.

2. Identify caustic curves.
3. Count the number of caustics detected in a one-dimensional window of

certain size in pixels for each axis.
4. Estimate probability of detecting a caustic in a pixel for each axis.
5. Compare experimental distributions obtained in simulations with theoret-

ical binomial distribution.

We have used Inverse Polygon Mapping [2] to carry out steps 1 y 2.

1.3 Application to QSO 2237+0305

We have simulated magnification and caustics maps for the four images of
QSO 2237+0305. We have considered two extreme cases in stars mass distri-
bution: masses distributed in a range of masses (from 0.01 to 1 solar masses
with a density law of 1

m )(hypothesis I) and simple distribution of identical
stars of one solar mass (hypothesis II).

We have counted the number of caustics detected in one-dimensional win-
dows of 4, 40, 200 and 400 pixels for each axis and we have calculated exper-
imental and theoretical binomial probability distributions. Comparing both
distributions Fig. 1.6 we have obtained the following results:

• Differences between probability distributions are very significant in the
case of image D. For example in X axis peak and centroid are between 6
and 7 detections when stars are distributed in a range and they are in one
detection in unimodal case, in a 400 pixels size window.These parameters
are in 3 detections when stars are distributed in a range and they are in
zero in unimodal case, in a 200 pixels size windows. We have obtained
similar results in Y axis.

• In the case of image D, from an experimental point of view, a single
measure of the number of caustics detected in a window of 400 pixels
would be sufficient to distinguish between hypotheses I and II. Let’s as-
sume that mean in X axis is 7 (expected value for I) and that error is
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Fig. 1.6 Image D, comparisson between experimental (dotted line) and theoretical (con-

tinuous line) probability distributions in windows of 4, 40, 200 and 400 pixels. Columns
first and second: hypothesis II, third and fourth: Hypothesis I.

±3. P(7 ± 3/I)=0.63 and P(7 ± 3/II)=0.22. Applying Bayes´s Theorem
and assuming that P(I) = P( II) we obtain p(I/7)=0.75 y P(II/7)=0.25.
If we assume that mean is 1±1 (expected value for II), P(1±1/I)=0.63 y
P(1± 1/II)=0.66, applying Bayes´s Theorem we will obtain P(I/1)=0.07
and P(II/1)=0.93. Let’s assume that mean in Y axis is 10 ± 3(expected
value for I), P(10 ± 3/I)=0.37 and P(10 ± 3/II)=0.12, applying Bayes´s
Theorem we obtain P(I/10)=0.76 and P(II/10)=0.24. If the mean was 2±1
(expected value for II), P(2± 1/I)=0.12 and P(2± 1/II)=0.38, applying
Bayes´s Theorem we would obtain that P(I/2)=0.24 and P(II/2)=0.76.

• A general problem of studies on source flux variation due to microlens-
ing is that we need to know the relative transverse velocity between the
source and the microlenses. This amount is necessary in order to know
experimental observation window size in suitable units (Einstein radii).
Usually it is difficult to measure transversal velocity and the estimates
of parameters depend on this magnitude in many experimental studies.
In this case, obviously, the velocity of the source crossing magnification
map will modify the number of caustic crossings in a window which size
is expressed in pixels. The possibility of solve size/transversal velocity de-
generacy depends on the case. In the image D, microlenses distributed in
a range of masses, if the number of caustics (X axis) is greater than 6, the
window will be grater than 1.2 Einstein radii, if the number of caustics (X
axis) is less than 3, the window will be less than 1.2 Einstein radii, if the
number of caustics (Y axis) is greater than 9, the window will be greater
than 1.2 Einstein radii, if the number of caustics (Y axis) is less than 3,
the window will be less than 1.2 Einstein radii.

We have constructed functions of probability conditioning to n caustic
crossings for both hypothesis. From these and applying Bayes´s Theorem we
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have obtained that probability of distinguishing between the two hypothesis
with more than 80 percent of likelihood is 0.76 in a 400 pixels windows in
X axis for D image. In Y axis probability of distinguishing between the two
hypothesis with more than 70 percent of likelihood is 0.77.

1.4 Conclusions

• Caustic crossing statistics is affected by microlenses mass function and by
shear.

• For D image of QSO 2237+0305 detection of a small number of events will
allow us to distinguish between unimodal and distributed in a range mass
distributions.

• We could determinate the size of observing window.
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