Probabilistic description of stellar ensembles

Miguel Cervifio

Abstract | describe the modelization of stellar ensembles in termgrobability
distributions. This modelization is primary charactetdizy the number of stars in-
cluded in the considered resolution element whatever iysiphl (stellar cluster)
or artificial (pixel/IFU) nature. It provides a solution dfadirect problem of char-
acterize probabilistically the observables of stellareamisles as a function of their
physical properties. In addition, this characterizatimplies that intensive proper-
ties (like color indices) are intrinsically biased obséates, although the bias de-
creases when the number of stars in the resolution elemergases. In the case
of a low number of stars in the resolution elemeXt< 10°), the distributions of
intensive and extensive observables following non tripiabability distributions.
Such situation a can be computed by means of Monte Carlo ations where data
mining techniques would be applied.

Regarding thénverse problem of obtain physical parameters from observational
data, | show how some of the scatter in the data provides beyshysical infor-
mation, since related with the system size (and the numbgiaoin the resolution
element). However, to make use of such an information it &led to follow itera-
tive procedures in the data analysis.

1 Introduction

We know for sure that galaxies are formed by stars. We alswkhat not all stars

are equal, but they have different characteristics dependin some physical pa-
rameters, like their mass, metallicity and evolutionapgst Observationally, in a
first approximation neglecting the particular peculiastof each individual star, we
can classify stars according their position in a color-nitagie diagram (maybe one
of the greatest success in the application of pre-comunalidata mining to as-
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trophysics). | show in Fig. 1 the color-magnitude diagrartagied fromHipparcos
datd. Such a diagram shows, at least, two relevant features:
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e Stars are located in particular regions of the diagram. €y we know that

such regions are the solutions of stellar evolution thedmgnvcollapsed in par-
ticular observable axes, so only particular regions of tieranagnitude diagram
are allowed. We can easily identify different areas acewydheevolutionary
state of the stars in the sample. As an example, the Main Sequen8erfivtlear
Hydrogen burning phase) runs from top-left to bottom-ritite figure, and the
Red Giant (RG) phase lies in the middle-right area. Eachutieolary stage is
characterized by the internal structure of the star, whsctiefined by the mass
and metallicity of the star at birth and the age of the star.

Not all regions containing stars have similar density. Vé® &now that it is due
to two different reasons:

1. The density of the area is proportional to the time sperghth evolutionary
phase, so the MS, where stars last 90% of their live, are mapalated that
RG phases. Also, the lifetimes of different Post-MS phagpkn the relative
stellar densities in the color-magnitude diagram for RdStregions.

1

Caption and figure taken from the Hipparcos site at

http://ww.rssd. esa.int/index. php?proj ect =H PPARCOS
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2. However, the variation of density along the MS cannot gared just by the
fact than the more massive the star, the more luminous aridster consump-
tion of their nuclear Hydrogen fuel; neither by the differages of the stars in
the sample. Massive stars antrinsically less common than low mass stars:
Stars of different masses are not formed with equal proibghblut the mass
distribution of starst birth, m—q follows a probability distribution called the
Initial Mass Function (IMFgp(m—o)), which, at least in its upper mass range
(m-o > 2My), can be approximated by a power lag{m_o) O m_%, with
exponentr ~ 2.35 obtained by Salpeter [8].

In the case of color-magnitude diagrams, making use ofstellolution theory,
we can obtain the physical properties of each star in the kamges, stellar masses
(e.g. VOSA by Bayo et al. [1]), and from this information, wencobtain properties
of the ensemble as an entity (age of a cluster, IMF, star foomgrocesses in a
region, amount of gas transformed into stars, etc...).

Of course, we can obtain the maximum information about alfastensemble
when we know all the components in the ensemble. Howevernidi the common
case. Even in deep observations of resolved stellar ctugitere are stars so dim
that are not detected. In a more general case, we have ncsdodég emission of
the individual stars, but just to the emission of the totadeanble, without further
information of the individual components. It is the commase in extragalactic
studies.

2 Modeling stellar ensembles

The modeling of stellar ensembles aims to provide inforamatibout the physical
parameters of an stelar ensemble (star formation histagsraf the system, chem-
ical evolution history) from just the integrated light oio@d from the ensemble.
Mathematically it means to recover a the primitive of a dédimtegral. Although
the problem looks to be highly degenerate it can be solveat(east we can suggest
a suitable range of solutions) thanks to the restrictiormoised by stellar evolution
theory, as it is the case of anlysis of color-magnitude diagy. Let me explainitin
some detail.

The emission of the ensemble is usually dominated by jusivéhfgh luminous
stars, and most of low luminous stars in the system (i.e. ties ¢hat defines the
total mass in the system) are undetected. In the other Haadyost luminous stars
are Post-MS stars, which relative densities in each ewiaty phase is just propor-
tional to the lifetime of hte phase. These lifetimes depemdthe initial mass and
the age of the stars in the Post-MS. In addition, there is pgrtmnality between
the density of Post-MS stars (which dominates the intedrlgdt) and the MS
stars (with a low contribution to the integrated light) giMey the IMF. Finally, the
different relative contributions are strongly dependentite observed wavelength
range. So, combining the information from different wawgjths we can make in-
ferences about the Post-MS population and infer from treapttysical properties of
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the ensemble including the total amount of mass into steasfarmation histories
etc.

This situation is related with the properties of the, soexhWild distributions
[9], or distributions where the highest possible valueh@ligh with a low proba-
bility, is able to dominate the mean value of the distribntidhewild distribution
responsible of the success on to obtain information fromirtegrated light is the
stellar Luminosity Distribution Function, SLDF, it meartise probability of find an
star with a given luminosity. Let us illustrate it with a silfagxample (we refer [5]
for more details):

Let us assume a system where all stars are in the MS and thsiatisdollows
a mass-luminosity relatiohC) m?. Assuming a power-law IMFp(m) Om~9,
we can define the sLD, (¢) as:

-1 =1 1-a—
nO=omx () —ack o T2 @

beingA a normalization constant sfa (¢) is normalized to one. The mean
value of the sLDF is then:

A [fmax 1-a— A p-a p-a

If 1+ B — a > 0, the mean luminosity is driven Bayx. In a typical sit-
uation with 8 = 3, the most luminous stars will dominate the luminosity if
o < 4: this is the case of Salpeter’s IMF [8].

Trivially, if ¢, (¢) is normalized to the number of stars in the ensembig;, the
value obtained, that i§%ot) = Aot X Uy, corresponds to themean total luminosity
of the ensemble (I will back to this point latter). When PbES-stars enter in the
game the situation is ever more extreme since their luniyasé even larger than
the one they had in the MS. So, the sLDF turns into a power-liatilution due
to MS stars plus a high luminosity tail with variable struetfaccording the age of
Post-MS stars). Given that tieean amount of gas transformed into staf$#iot) is
also proportional ta/4, (also provided by the IMF) we can obtain age dependent
mass to luminosity ratios,%ot) / (-#10t), Which allow to obtain a value of#ot
from the observed4,t once the age is obtained.

The main technique, called evolutionary population sysih)@vas mainly devel-
oped by B. Tinsley [11] in the 70’s. Currently there are saleodes which provide
the mean values of the sLDF (although normalized to diffevatues and defined
asintegrated emission instead a mean value), lig&rburst99 by Leitherer et al.
[7] or Bruzual & Charlot models [2].
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However, since we work with wild distribution function (the sLDF) the mean
value of such distribution is not the full history: The meatue is not a good proxy
to make inferences (contrary to the gaussian case). Our maastion know is how
the functional form of the sSLDF change when we consider ehéesrof stars. So
we must combine each of the possible star in the ensemblebydp].

As a general rule, the probability distribution functiom® resulting from the
sum of several variables is obtained as the convolutioneoPtdFs of the individual
variables. For example, lgf(x) be the PDF of a variablg and ¢y (y) the PDF
of a variabley independent ok. The probability density of a variable= x+ vy is
given by the product of the probabilities ¢%(x) and ¢y(y) summed over all the
combinations ok andy such thau = x+y, which is the definition of convolution:

8u(0) = [ $x@8y(u—2)dz= 99 © dy ). )

In our case, we are assuming that all the stars have lumiessiistributed
following the same distribution functiog, (¢), and that the stars are indepen-
dent on each other. Therefore, the population Luminosistribution Func-
tion, pLDF, of an ensemble M stars is obtained by convolvingy (¢) with
itself Nyot times:

ot

PLi(L) =L@ ® ... @PL(E). (4)

Hence, if the sLDF is known, the pLDF of an ensemblef; stars can be com-
puted by means of a convolution process. Self-convolutimve some additional
interesting properties, in particular that the cumularftshe pLDF are just 4o
times the cumulants of the sLDF. So, trivially,

p1(-Z) = Niot Ha (£), Ko(L) = 02(L) = Nt Ka(£),
1
W(2) = = (@), K& =fsr@), 6

wherek; is the variance angy and ), are the skewness and the kurtosis of the
corresponding distribution. Note that, in agreement wlih ¢entral limit theorem,
vi(Z) — 0 andy(Z) — 0 for large enougiNi: values, i.e. the distribution tends
to a Gaussian with a relative dispersion which also tendsto. z

Just for reference values, a gaussian approximation of tBd-ps reached for
stellar ensembles with total mas#.t > 10°M,, for visible bands and# >
10’M,, for infrared bands [3, 5].
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Previous relations are useful to unveil the scale propedfd DFs, and obtain
situations where the pLDF can be properly approximate byusgjan, so its mean
value can be use as a proxy for data analysis (I will back ®gbint latter). How-
ever, it is not sufficient for current astronomical reseatioh increasing spacial res-
olution and sensibility of current facilities implies a rexddion in the number of stars
per resolution element (pixel, IFU, etc); the observatibfamt sources provide ac-
cess to systems with an intrinsically low number of stars;dhastic reduction of
the observational error provides that observational dedes thephysical variance
(due to the pLDF variance among others) of stelar ensembles.

The convolution method, although theoretically plausibtntains technical dif-
ficulties: the wild nature of the sLDF, including gaps and lpgrim the high luminos-
ity tail due to fast stellar evolutionary phases, needs h Fegolution in the binning
of the sLDF for convolution. Alas, the large dynamic rangduminosities, from
102 L, to 1¢° L, makes the numerical computation unfeasible. So MonteoCarl
simulations are more useful to describe the resulting pLD#side the gaussian
regimen.

3 Data mining on stellar ensembles simulations

The needing of sampling the pLDF for different situationsié just the only rea-
son to use Monte Carlo simulations. In the previous Sectidwase just shown the
case of a single pLDF, which would corresponds to a given lmndavelength
bin. But a real analysis of observational data makes usevefakbands or wave-
length points. Given that different regions of the possilgdeDF (with a fixed set of
ensemble physical conditions) are dominated by the sanaf s&drs in particular
evolutionary stages, strong (non necessarily linear)etations between the sLDFs
are expected. In addition, the distribution nature of esitanquantities produce non
trivial rupture of the intensive character of assumed igitenquantities like color
and spectral indices commonly used in data analysis (se& Figlow and [6] for
details). A formal solution is a multidimensional convadut process with a num-
ber of dimensions similar to the wavelength resolution in@hservations, but it is
technically unfeasible as in the case of simple pLDFs, aadeatly, the problem
remains unsolved.

Additional advantages of Monte Carlo simulations is to gtailuations where
the pLDF shows a bimodal behavior. These situations arectapéor stelar ensem-
bles with a number of stars such the mean luminosity of thefplsDhear maximum
luminosity /max Of the sLDF [4]. Bimodal distributions also appear when timeus
lations make use of power-law distributions.df,;. Unfortunately, there is no way,
but just Monte Carlo simulations, to identify and explore ®ituations when its
happens (see [4, 5] for more details).

The situation can be strongly improved by the use of Data ijriechniques
over simulations. As an example, | show in Fig. 2 a serendipsult of the analysis
of the Monte Carlo simulations of young stellar ensembles (ke caption and [12]



Probabilistic description of stellar ensembles 7

for details). Although the result, once found, can be exg@diby the wild nature of
the corresponding pLDF for a low number of stargd; < 10%), it was not expected
apriori when simulations where performed.

Fig. 2 Extensive,Q(H?), vs.
Intensive,Tefr, quantities in
the case of stellar population
Monte Carlo simulations.
Note that the intensive quan-
tity (formally independent of
the size of the sistem) is not
longerintensive in the case
of low populated clusters,
but correlates strongly with 210°
the extensive quantity. Also

note bimodal features (right-

bottom box) in the region just

before the intensive quan-

tity becomes really intensive. 110!
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4 The inverse problem: induced sampling

| must remind that interesting the results of stelar ensemblonte Carlo simula-
tions would be, the final goal of the simulations is to provagalysis tools to infer
physical quantities from observational data. Stellar eiides models, whatever are
used in the form of pLDF mean values, cumulants oor the whiglkeiloution, have
an intrinsic undefined parameter: the number of stars inrtkerable, 4, which is

in fact one of the physical parameters aimed to obtain fraemtlodels (remember
the discussion about tHe%ot) / (- #4ot) relationships).

Even in the case of gaussian pLDF, not just the mean valueeoditribution
must be correctly fitted, but also their associated variégwbéch intimately depends
on ot). The only way to do that is to use traditional methods to gaeslue of
the physical parameters in the model comparison, and ét¢hat method up using
the variance of the pLDF as a metric of fitting. Obviously, thethod is not valid
for no gaussian distributions the the meaning of the mearvaridnce can not be
translated neither to representative values nor confidatmwals. So, new methods
for analysis are needed in that cases.

Finally, for the case of observation with spatial resolntiowe can advantage of
the intrinsic distribution of #{ot in the observational set: different resampling of the
observational set (varying artificially the size of the leson element) must pro-
duce self consistent results in terms of physical parareeterce related ultimately
with the sLDF of the system, with scale in mean value and wagawith 4y of
the considered resolution element. This methodology af@ed sampling provides
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additional test about our inference .offy; in the system. This method is similar to
bootstrapping the data, but including the physical modh&l.(t;,: dependent pLDF)
in the analysis of stelar ensembles.

However, the methodology | proposed here, has not been yetajeed properly
in no analysis method (as far as | know).
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