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Abstract The fitting of experimental or observational data to spedifitctional
forms requires high computational capacities in order ¢&leawith the complexity
of the calculations. This complexity makes compulsory tsage of efficient search
procedures, such as evolutionary algorithms. Evolutipaégorithms have proved
their capability to find sub-optimal high-quality solute®mo problems with large
search space. In this context, Particle Swarm Algorithm[ifigérential Evolution
are used to fit a data set to a serial expansion of Legendragqoipl. Concerning
the data set, 56 rotation curves of spiral galaxies are wséditd up a serial ex-
pansion —physical meaningless— retaining the essentiadrirdtion of the curves.
The final goal of this work is two-fold: firstly, to provide adbretical functional
form representing the features of the rotational curvepmébkgalaxies in order to
be coupled to other computational models; and secondlyetimodistrate the appli-
cability of the evolutionary algorithms to the matchingweén astronomical data
sets and theoretical models.
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1 Introduction

This article focus on the construction of a model for the tioteal curves of spiral
galaxies. For this, the observational data are normalindd@erged, and next, fitted
to physical meaningless functional forms. Due to the lagggeh space, Evolution-
ary Algorithms (EAs) are used to find sub-optimal high-gtyadiolutions.

EAs, like Particle Swarm Algorithm (PSO) and Differentialdtution (DE) are
powerful methods for solving many tough optimization peshk. In science, the
EAs have been profusely used to solve complex problems.ignatbrk, PSO and
DE are implemented to adjust a large observational data sétretational curves
of spiral galaxies— to functional forms. The huge volume afedunder treatment
forces the use of this kind of techniques.

PSO and DE are well known EA, widely adopted and suitableterfirst ap-
proximation to any optimization problem. Regarding thechional form, Legendre
polynomial and normal polynomial are considered to repcedhe essential infor-
mation of the rotational curves.

This paper is organised as follows: Section 2 summariseR¢teged Work and
previous efforts done. In Section 3, the Evolutionary Altjons used in this article
are briefly described. In Section 4, the details of the imgletation and the Pro-
duction Setup are shown. The Results and the Analysis gpéaglesd in Section 5.
And finally, the Conclusions and the Future Work are preskimé&ection 6.

2 Related Work

In the bibliographic search, few related studies have beand. It exists an old

work which has inspired partially this survey. In this wotke author used a ge-
netic algorithm to adjust the observational data of theagjgialaxy NGC 6946 [1].

Instead of using a physical meaningless, the author useguatien with physical

meaning describing the four mass contributions to theigotaturve —bulge, disk,

interstellar gas and halo— (Eq. 1).

VA(r) = VB(r) + VB(r) + VA(r) + v&(r) ey

Except for the halo, the other three contributions are ntkiigea variable,
whereas the halo contribution is modelled by the Eq. 2. Thezethe number of
parameters to adjust is only three.

Vi(r) = 2:0%-(1-(2) - tang (7)) @

In spite of the similarities —the application of a Genetic &dighm to fit a data
set—, the target of this work is very different. Whereas in fif focus is clearly on
the physical behaviour of the rotation; in the present wotk,study focuses on the
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extraction of the essential information of the curves imedlin order to produce a
universal curve.

3 Evolutionary Algorithms

EAs are stochastic search methods which maintain a popnlafi tentative so-
lutions that are manipulated competitively by applying sorariation operators to
find satisfactory solutions. The skeleton of a standard Ee& i®llows: EA proceeds
in an iterative manner by generating new populatiB@ of individuals from the
former population, every individual in the population is #ncoded version of a ten-
tative solution, an evaluation function associates a fitnvatue to every individual
indicating its suitability to the problem, the canonicaj@iithm applies stochastic
operators in order to compute a whole generation of new iddals. In a general
formulation, variation operators to create a temporaryubetpn P’(t) are applied.
Next, the resulting individuals are evaluated. Finally,eavrpopulationP(t+1) is
obtained by using individuals fro'(t) or P(t).

In all the EAs used in this work, the population structure émictic. Thus,
the intrinsic operations to each EA take place globally dtierwhole population.
Furthermore, in all cases the EAs follow a generational madevhich an entire
new population of individual®'(t) replaces the old on(t) [2].

3.1 Particle Swarm Algorithm

In PSO initially, a set of particles are randomly createdribwthe process of par-
ticles movement, each particle keeps track of its coordmat the problem space
that are associated with the best solution it has achievddrsblot only the best
historical position of each particle is kept, also the agged fithess is stored. This
value is calledocalbest

Another "best” value that is tracked and stored by the gleeasion of the par-
ticle swarm optimiser is the overall best value, and its tioce obtained so far by
any particle in the population. This location is calgdbalbest

The PSO [3], [4], [5] concept consists of, at each time stBpnging the veloc-
ity (accelerating) of each particle toward ltxalbestand theglobalbestiocations
(in the global version of PSO). Acceleration is weighted braadom term, with
separate random numbers being generated for accelerati@idlocalbestand
globalbestiocations.

The process for implementing the global version of PSO inkavfs:

1. Creation of a random initial population of particles. Eaarticle has a position
vector and a velocity vector on N dimensions in the probleatsp

2. Evaluation of the desired (benchmark function) fitneshl imariables for each
particle.
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3. Comparison of each particle fitness function withldsalbest If the current
value is better than the recordiedalbest it is replaced. Additionally, if replace-
ment occurs, the current position is recordetbaalbest position

4. For each particle, comparison of the present fitness Welgtobal best fitness,
globalbest If the current fithess improves tlggobalbestfitness, it is replaced,
and the current position is recordedgisbalbest position

5. Updating the velocity and the positibaf the particle according to Egs. 3 and 4:

Vid (t+0t) < Vig (t) +¢1 - Rand) - (X43°81°¢s_ x4 ) +- ¢, - Rand)) - (6 P25 i)
3

Xid (t + Ot) < Xig (t) + Vig (4)

6. If an end execution criterion —fitness threshold or numbeyemerations— is
not met, back to the step number 2.

In the implementation of PSO algorithm, tbgandc, constants were established
asc; = ¢, = 1 and the maximum velocity of particléé,ax = 2 [4], being these
values the most typical ones. The rest of the configuratied iss 100 particles as
population size and 5,000 cycles.

3.2 Differential Evolution

DE was proposed by Storn and Price [6], [7] in 1997. It is a deterministic tech-
nique based on the evolution of a population of individualsresenting candidate
solutions. The generation of new individuals is carriedwitih two operators: mu-
tation and recombination.

Mutation adds the proportional difference between two ocanlgl-selected indi-
viduals to a third individual (also randomly-selected).thhese three randomly-
selected and different individualg;, v, andvs, a new individualw; —termedmu-
tant vector— is generated using Eq. 5.

W = Vi+ - (V2—V3) )

wherey is themutation rate

After the mutation operatara second operator —termeelcombination oper-
ator— is executed. A recombination on each individwal(target individual) to
generate a trial individual; is performed. The trial vectoy;, is constructed mixing
w; andy; individuals, Eg. 6, under a predefineztombination rateC; € [0, 1]; or if
the equalityj = j; is met —beingj an integer random numbgre [1,D].

1 Apparently, in Eqg. 3, a velocity is added to a position. Howgthés addition occurs over a single
time increment (iteration), so the equation keeps its cohgrenc
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. wi(j) ifrand <C; or j = j;;
ul) = {vi ((j)) otherwise ()

Finally theselector operatodecides, based on the improvement of the fitness,
whether the trial individual is accepted, and then repldabegarget vector, or the
trial individual is rejected, and then the target vectoraém in the next generation.

In the implementation of DE algorithm, the mutation rate veasablished as
¢ = 0.5 and the recombination rate @s= 0.5, being these values the most typical
ones in the literature [6]. The rest of the configuration usedlO0 particles as
population size and 5,000 cycles.

4 Production Setup

Diverse serial expansions were tested to fit the experirhdata to the theoretical
physical-meaningless curve. In spite of the equal a priapacity, the Legendre
polynomial —50 degrees in all serial expansions— serial egios showed a major
sensitiveness to reproduce the data behaviour and prothedalvest values of the
fitness function.

According to the usual practice in adjustment of experiraketta to theoretical
curve, the chi-square test ¥2— has been chosen in this work [8] as fitness func-
tion. The lower the(? value is, the closer the solution is to the objective —therfitte
experimental data is to the theoretical curve—. Thus, theisiimminimisex?.

Considering a standard fitting problem, where one is giveiserete set of N
data points with associated measured ermyrsind is asked to construct the best
possible fit to these data using a specific functional formHerfitting function, the
most appropriated fitness function is the merit functygh Eq. 7 [9]. Therefore,
independently of the specific functional form chosen, theefis function used in
this work isx?, Eq. 7.

X2 _ Z (YSimuIated_ YObserved)z 7)
for all points

Oobserved

For each case —each EA and type of polynomial— a total of 25 teste exe-
cuted in order to reach the desired statistical relevance.

As pseudorandom number generator, a subroutine based @eivher Twister
has been used [10].

In order to fairly compare the curves of the galaxies, a d@ulbrmalization has
been applied. First of all, the size of the galaxies has todmdgenized. For this
normalization, the radius where the maximum velocity ischeal is settled —in
arbitrary units— at 0.1 units. Consequently, all the radéasured for the galaxy
under modification are conveniently scaled.

Second of all, the maximum velocity of each galaxy is setded —in arbi-
trary units—-. As consequence, the rest of measured vededitie also appropri-



6 Miguel Cardenas-Montes et al.

ately scaled. Finally, resulting of the scaling in velazsti the velocity error must be
rescaled proportionately to the velocity associated.

As result of this double normalization, all the curves haea@mmon coordinate
at (0.1, 1). Once the normalization process has proceduedxtraction of a pattern
representing all the curves can be executed. In Fig. 1 twodigare presented: in the
left figure the complete observational data set, and in tite the data without the
error bars. Particularly, the galaxy rotation curves usetthis work were extracted
from a large astronomical data set [11], covering approtétyab0 galaxies, being
involved a total of 5051 points.

5 Results and Analysis

It is well known in Evolutionary Computing that it is not pdsie to know a priori
which EA will perform the best for a particular problem. Fbistreason, optimiza-
tion problems are treated with a variety of techniques,imatg the best ones for
further improvements.

In Fig. 2 —left— the comparative box plots of the best resutsie algorithms
PSO and DE are presented. As can be appreciated the PSQratgperforms better
than DE, in both: the absolute best result obtained afteefhtest, as well as the
median of the samples. Therefore, the use of DE will be regkfidr this problem.

The application of the Wilcoxon signed-rank test [12] to tfega shown in the
left panel of Fig. 2 indicates that the differences are sicgunt from the statistical
point of view fora = 0.05.

In Fig. 2 —right— the evolution of the best result for each cstselied is pre-
sented. In this figure, the evolution of PSO with Legendre/paiial can distin-
guished from the other cases by the rapid evolution duriegfitist half of gener-
ations. However, for the second half the fithess evolutiagrsites. The other two
cases show a lower ability to evolve along the generations.

Orbital Velocity Orbital Velocity
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Fig. 1 All rotation curves doubly normalized. Panel (a, left) shoatadvith errorbars, while panel
(b, right) without errorbars
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In Fig. 3, two views of the absolute best result —the fittestisoh to the ob-
servational data— are presented. As can be appreciateeé igetieral view —left
in Fig. 3—, the adjustment is far from the optimum for valuesxofmalized radii
higher than 0.2. This value corresponds to the double ofddais where the ve-
locity reaches its maximum value. In this range [0.2, 1.0 febservational data
exist, therefore, it is more difficult to fit accurately thenfional form to the data.
Probably the own nature of the Polynomial of Legendre, pcodyoscillation for
these values, deteriorates the final result impeding fineisadent.

On the contrary, in the inner segment [0, 0.2], the main pltti@observational
data are concentrated, and thus a better adjustment iste’p@&te observation of
the area where most of the data are concentrated [0,0.2] +nidhg. 3— shows
an excellent adjustment to the observational data. As isegfied, the functional
form chosen accurately adjusts the observational data.

Best Results Fitness Evolution
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—  PSO - Normal Polynomial
—  DE - Legendre
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Fig. 2 Panel (a, left) shows the comparative box plots for the besttseshtained for PSO and

DE algorithms, while panel (b, right) shows the fitness evoluf@rthe best result of each case
studied

Fig. 3 Absolute best result —the fittest adjustment to observational datatained. Configuration
used PSO with configuration of 100 particles and 5,000 cychesaaseries of Legendre Polyno-

mials of 50 degrees. Panel (a, left) shows a general view, wailelgb, right) shows a closer view
of the smaller radii
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It can be concluded that a high-quality adjustment is preduao the area cor-
responding to the smaller radii [0, 0.2], being the adjustinhess optimum for the
external segment [0.2, 1.0].

6 Conclusions and Future Work

This paper deals with the use of Evolutionary Algorithms djuat observational
data —rotational curves of spiral galaxies— to specific fiomal forms. The nu-
merical experiments performed show that PSO algorithmiabtaore accurate re-
sults than DE algorithm. In general, the results obtainedaestrate the effective-
ness of the application of Evolutionary Algorithms to copihwihe extraction of
essential information from huge volume of astronomical astdophysical observa-
tional data.

The natural forthcoming step is to implement the populatomrsification
mechanisms necessary to avoid the stagnation of the fitvadsagon. Besides,
the method to generate the initial population will be reedj replacing the random
generator by low-discrepancy numbers sequences gendratally, the checking
of other EAs, as well as other functional forms to generatéer fadjustment will
be taken into account.
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